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required to produce an existing phase-shifter design at

Klgh volume. These figures indicate the distribution of

cost and include attrition, burden, and profit. The attri-

tion rates assumed were 10 percent on metal parts, 30

percent on ceramic parts, and a 4-percent rejection rate

of completed assemblies at the final inspection level. The

costs of materials are based on current prices on actual

vendor quotations. Fabrication and assembly use known

and proven techniques. Consequently, the figures of

Table I are considered to be conservative with regard to

ultimate high-volume production cost of an X-band dual-

mode phase shifter.

CONCLUSIONS

A substantial body of knowledge exists about the de-

sign and manufacturing considerations for the dual-mode

reciprocal latching ferrite phase shifter. Fundamental de-

sign techniques are well established for providing reason-

able performance over moderately wide frequency bands.

The weight–insertion loss tradeoff has been expIored

analytically and found to predict an optimum choice of

material for low RF power applications. Parameters

affecting switching and, in particular, shorted-turn damp-

ing, have been identified and expressed in normalized

form for convenience. Finally, the manufacturing problem

has been worked in far greater detail than the scope of

this paper allows, to the conclusion that lightweight

X-band phase shifters can be produced at high-vohnne

rat es for unit cost levels on the order of $10.00.
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Computer Analysis of Microwave Propagation in a Ferrite Loaded

Circular Waveguide—Optimization of Phase-Shifter

Longitudinal Field Sections

A. M. DUPUTZ AND A. C. PRIOU, MEMBER, IEEE

Absfract—A theoretical analysis of the microwave propagation in

a circular TEH waveguide partially or completely loaded with an

axially magnetized ferrite rod is presented. This study is based upon
an exact analytical treatment of the Maxwell% equations, together

with an original numerical method of solving transcendental equa-
tions with a complex variable. The introduction of the complex
propagation constant T = a + jd, taking in account the losses in the
tilling medium, had never been’ attempted because of the mathe-

matical dilliculties involved making essential the use of a large
capacity computer. The developed program not only supplies all the
propagation characteristics for a given structure but also enables us

to optimize a phase-shtit section in accordance with the user’s
requirements.

This study is a first step towards the theoretical optimization of

two types of reciprocal phasers: the dual mode phaser (DMP) and
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the polarization insensitive phaser (PIP), both widely used in array
antenna systems. The computed results obtained for the basic sec-

tion of such phasers operating at a central frequency of 9.5 GHz

are given.
Obviously, thk work is still incomplete since it does not include

the optimization of all the components of a practical phase shtiter,
for example, the polarizers. Moreover, we have assumed the ferrite
partially magnetized by a continuously variable bias field, although
the PIP and the DMP are normally operated in a latching configura-
tion; we presently complete our study according to these practical

considerations.

NOMENCLATURE
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I. INTRODUCTION

THE most commonly used method of calculating the

e]ectromagnetic wave propagation in loaded wave-

guides consists of writing out the ‘Maxwell’s equations

in the filling media together with the boundary conditions

for the electromagnetic (Ehf) fields on the interface of

these media and on the guide wall. From this, we deduce

the characteristic equation which protides the mode

spectrum. Each mode is thus defined by its propagation

constant r = a + ,j@. It is then easy to complete the

study by determining the EM fields and the power they

carry.

Such a method is well known [1]-[3] and can be ap-

plied straightforwardly to the structure under study:

a TE1l circular waveguide loaded with an axially mag-

netized ferrite rod and a dielectric tube. As the guide wall
(a perfect conductor) and the ferrite-dielectric interface

coincide with the 6 coordinate surfaces (in cylindrical

polar coordinates r,6,z), it is relatively easy to obtain an

exact analytical derivation of the characteristic equations

which is rarely the case in the study of waves guided in

anisotropic and inhomogeneous media. These equations

include Bessel functions of complex argument. In order to

solve them, we have developed a general method of

searching for the zeros of a transcendental function

F ( I’) by means of a computer program.

We have thus worked out a general technique which,

starting from the physical and geometrical specifications

of a structure, supplies all the information desired for

each propagating mode, and particularly the precise

characterization of the fundamental mode (mode of

weakest attenuation). A program of this type may be
very useful for the engineer who wants to know rapidly

and exaetly the microwave behavior of a given configur-

ation.

A Faraday rotation phase shifter generally consists

of a phase-shift section located between two circular

polarizers. In this study we only deal with the phase-

shift section of two reciprocal phasers of this class: the

polarization insensitive phaser (PIP) and the dual

mode phaser (DMP). The optimization of the basic

section of these phasers involves the choice of the filling

materials and the determination of the optimum geometry.

This paper begins with a review of the mathematical

derivation of the characteristic equations for the two

basic structures: the ferrite filled guide and the guide

loaded with a ferrite rod axially located and surrounded by

dielectric. Then, we briefly review the numerical method

for solving the equations F (I’) = O, this having formed

the subject of a previous publication [4]. We also give the

analytical expressions of the field components, Poynting

vector, and absorbed power.

The second part of this work is devoted to the theoretical

optimization of DMP and PIP centered at the frequency

9.5 GHz. We analyze the results supplied by our computer

program. The use of normalized parameters versus fre-

quency makes possible a limited scaling to other frequency

regions.

II. MODAL ANALYSIS OF THE TWO BASIC

STRUCTURES EXCITED BY THE CIRCULARLY

POLARIZED TE,, MODES

A. Geometrical Definition-Physical Parameters

A circular waveguide of infinite length and radius “a”

contains on its axis a ferrite rod of radius ‘%” surrounded

by dielectric [Fig. 1(b)]. The DMP generally consists

of a metallized ferrite rod, i.e., b = a [Fig. 1 (a)]. The

ferrite rod is axially magnetized by an uniform de mag-

netic field. We assume that the internal field Hi is equal to

the applied field Ha.

The ferrite and dielectric materials are characterized

at the angular frequency u by their relative permittivity

and permeability y given by

cd = 6d’(1 ‘~tfin&)

for the dielectric and

cf = ef’(1 —j’tan~f) #=

P –jK O

jK p O

0 0 p.
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.
,/, -Y1,Y2,v1’,Y2’: integration constants

@

Y’ y,

,/ J., Y.: Bessel functions of first and second kind..
+,+

.
The incident wave being the TEII mode of the empty

(a) (b) guide, we obtain n = + 1 for a left-hand (or negative)

Fig. 1. (a) Ferrite fully filled circular waveguide. (b) Inhomogene.
circular polarization and n = — 1 for the right-hand (or

OUSIYloaded circuhw waveguide. positive) circular polarization. It should be remembered

that the polarization of a guided wave is, by definition,

for the ferrite, where
that of the transverse fields on the waveguide axis.

Each of the polarizations is propagated in the circular
~ = ~t — jp”, ~z = /.L,’ = .~/JB”J K = K’ – jK”. guide independently of one another. They are the normal

modes of the structure. They are degenerate when the
For the demagnetized ferrite (H, = O) guide is filled with an isotropic medium, whether homo-

The elements p, K, and ~Z of the permeability tensor

depend upon the magnetization state of the ferrite.

B. Coupled Wave Equations--Hybrid Modes

Writing out the Maxwell’s equations in each filling

medium of the guide generates wave equations in terms

of the longitudinal components of E and H fields.

We obtain in the isotropic dielectric a wave equation of

the classical type:

[1

E,~

(VT’ + ~dz) =0 (1)

H,d

and, in the ferrite, two coupled wave equations linking

E=f and H.f:

(V,’ + d)H,j + eE,f = O (2)

( v.’+ j)E=f + gllgf = o. (3)

If e and g are nonzero, (2) and (3) imply the existence of

hybrid modes with six field components. Now, e and g can

be zero in only two cases as follows.

1) If K = O, the ferrite is demagnetized and then

equivalent to an isotropic dielectric with scalar constants

~fjlJi.

2) If r = O, there is no propagation along the z direction

(e-r’ = 1). This can be considered as a cutoff due to the
medium. We shall exclude this case from our study.

Let us first of all examine the case of the magnetized

ferrite when the dc field and the traveling wave have the

same direction (i.e., H; > O). The coupled wave equations

can be solved by using an algebraic method close to that

of Kales [1] (see Appendix I).

The general expressions of the complex longitudinal

components are of the following form:

geneous or not. But the anisotropy induced by magnetiz-

ing the ferrite removes this degeneracy. The two normal

modes with positive and negative circular polarizations

travel with different propagation constants, thus with

different radial wavenumbers s. Consequently, the ex-

ponential dependence in 8 cannot be reduced to a cosine

function, thus to an amplitude factor. It occurs as a phase

factor just like exp ( –j@z) and exp ( jut).

Thus the factor of the real field components should be

written: cos (cd— @z + @, which corresponds to a pro-

gressive wave along both the z axis and the 0 azimuth.

We call rotative modes the modes that present this

peculiarity. We shall point out that the negative rotative

mode corresponds to a left-hand circularly polarized wave,

and the positive rotative mode corresponds to a right-

hand polarized, wave.

Let us now consider the case of the demagnetized ferrite

(Hi = O). As the wave equations in the ferrite are no

longer coupled, the preceding treatment is not applicable.

The wave equation in the isotropic ferrite is as follows:

(V~2 + I@) (E.f) = O. (4)

(H,f)

However, the modes preserve in this case a hybrid

structure if the waveguide contains two media or more,

because the six field components are necessary in order to

satisfy the boundary conditions on the interface of the

media.

In Appendix II, we give the expressions of the field

components in both media: ferrite and dielectric, and in

both cases: Hi >0 and Hi = O.

C. Boundary Conditionz---Characteristic Equations

The simplest case is that of the ferrite filled waveguide

since there are only two boundary conditions, i.e., the

tangential components of the electric field are zero on the

guide wall.

[mJ~(.sIT) + wJ~ (w) ] exp ( .jnO) exp (– l%),
In the case of the guide with heterogeneous fillhg, the

tangential electric and magnetic fields must be continuous

in the ferrite on the ferrit~dielectric interface, which adds a further

[%/Jn(ki~) + %’yn(~d~) ] exp ( jno) exp (– rz) ,
four equations.

The characteristic equation of the propagation is ob-

in the dielectric tained by setting equal to zero the determinant of the
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system of the boundary conditions equations: we give

successively the characteristic equations of the filled guide

(5) andofthe partly filled guide (6). Foreach of these

structures, there are two eases to consider: the first is that

of the demagnetized ferrite (Hi = O) for which the positive

and negative rotative modes correspond to the same

characteristic equation [(5a) and (6a) ]; and the second

is that of the magnetized ferrite (Hi > O) where each

rotative mode corresponds to a different characteristic

equation [ (.!ib) and (6b) ]. In the latter case, we only

write one equation for the two modes and it is the value of

the azimuthal wavenumber which enables us to dis-

tinguish one from another.

Characteristic equations for the filled guide are the

following.

1) Hi = O. It is the trivial case:

F(r~) = J{(iifta) = O, for the TE modes

F(rl) = J~(kjia) = O, for the TM modes. (5a)

2) Hi >0:

F(r) = W#l(sla) – WlJl(s2a) = O. (5b)

With characteristic equations for the partly filled guide,

we have found the determinantal form more convenient

for the numerical treatment.

D. Numerical Analysis of the F ( l’) = O Equations

Once we have established the analytical expression of

the F ( I’) functions, we can carry out the search of all the

roots in the I’ complex plane in order to determine the

mode spectrum. We are going to review here the principle

of the computation method developed in our laboratory

[4].

First we choose a closed contour in the I’ plane capable

of including all the modes which can be propagated.

Excluding a priori the half-plane a <0 which would not

correspond to a physical solution, and the /3 < 0 zone

associated with backward modes, we define a rectangle in

the remaining quadrant (a > O,p > O) by fixing a max-

imum value for a and b, respectively. In our case a

maximum is equal to a few tens of decibels per centimeter,

a value above which the mode is so strongly attenuated

that it presents no practical interest; @ maximum is a

sufficiently high value from which F ( I’) becomes infinite.

The number of modes which can be propagated (and

which satisfy the above criteria) is given by the number

of zeros of F(r) contained in the rectangle thus defined.

1) Determination of the Number of Zeros of F( I’): This

is based on a well-known theorem: the number N of zeros

of an analytical and holomorphous function F ( J7) that

are contained within a contour C of the complex plane 1!’

is given by:

1) H; = O:

0 0 Jl(kja) Yl(k~;a) o 0

0 0 0 0 J{ (kd%) Yl(kdia)

Jl(k~ ‘b) o –Jl(lc~ib) – Yl(k~ib) o 0

0 Jl(k~ib) o 0 –Jl(kJb) – Yl(k~ib) = 0, (6a)

nSJl(iif ‘b) UJJ; (k~ib) o 0 – U~J{ (kjb) – U~Y; (kdib)

VfJ/ (k,ib) – nflJl (/cf ‘b) – VdJ< (kjfb) – vdy~’(k~ib) o 0

2) H; >0:

0 0 Jl(7c~a) Yl(kda) o 0

0 0 0 0 J{ (lc~a) Y1’ (k~a)

Jl(slb) Jl(szb) –Jl(lcdb) – Y1(lc~b) o 0

TIJ1 (slb) TZJ1(szb) o 0 –Jl(kdb) YI (kdb)

= O. (6b)

LIJ; (sib) + nMIJl(slb) LJI’ (szb) + nk?Jl(s2b) o 0 – NJ{ (k~b) –NYl(k~b)

PIJI’ (sib) + nQIJl(slb) P#{ (szb) + nQ.Jl(s,b) RJ{ (k~b) RYI’ (kdb) o 0
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F’(r)
N=L.

!
— dI’

27rj ~ F(r)
(7)

provided that no zero belongs to C. The numerical evalu-

ation of this integral for a large number of points along C

would be rather time consuming.

The number N can, however, be evaluated much more

simply by considering the phase of the function F’( I’)

along the contour where each 2~ jump corresponds to a

zero within the contour. In fact, in developing the pre-

ceding relation, we have

f

F’(r)
— dr = IOg F(r)]c = 10g F(r)]c +jarg F(I’)]c

, F(I’)

(8)
then

(9)

From the numerical point of view, the F ( l’) phase is

defined between – r and + ~. All that is needed is to

detect the rough phase shifts from – m to +m or from

+T to – T by following the contour in a clockwise way,

and count + 1 at each jump from —m to + m and — 1

at each reverse jump. The sum so obtained gives the

number of zeros inside the countour, a zero being itself a

phase shift from m to O, or from – (7r/2) to +7r/2 for

instance, as we can see on Fig. 2 where we count three

zeros.

If the function F( I’) is not holomorphous, as it occurs

in the case of the circular waveguide, the sum obtained is

equal to the difference (N — P) of the number of zeros

and of the number of poles located within C. But it is

easy to return to the preceding case, as we know the values

of r corresponding to these poles:

17c,itic = [–&2ef(# * K) ]1/2.

2) Localization oj the Zeros of F ( r): Starting from

positions on the contour of the phase jumps of F( I’)

can look for the exact value of the zeros by using

p (radlm)

“’f?’)r ‘------------------
1000 r=_. _-_. _._. _.. fi2. -.

. .. ___

o

1

‘“’l%+d
0-10 20 30

(X40(Nwm)

Fig. 2. Equiphases in the contour of the I’ plane.

the

we

the

605

method proposed by Gardiol [5]. This consists of following

the equiphases of F(r) for which we have registered a

jump of – r to + ~ by directing towards the decreasing

amplitudes up to the close neighborhood of the desired

root. The exact position of the root is then determined

by the Newton-Raphson interpolation method.

E. Calculation of the Fields and Powers

We must consider the propagation of a single mode if we

wish to relate the magnitude of the fields in the structure

to the level of the incident power P;. Thus we choose the

fundamental mode and normalize the fields by putting:

Pi = ho’ W, where XO is the free space wavelength ex-

pressed in meters.

The average incident power flow can be calculated in the

section z = O chosen arbitrarily as an input section. We

have

Pi = R. ~ ~~,Z=O)(ET X HT*) . z ds.

At every point (r, L9,z)in the section, the real part of the

longitudinal component of the complex Poynting vector

represents the average power flow per unit surface around

the point under consideration. Thk flow only depends

upon r in a given section, that is

P(r) = Re
[

(ET x HT*) .Z

2 1
= + Re [ECHO* – EoN,* ].

The P(r) curves thus express the radial distribution of

the average power flow.

Starting from the general expression of the volume

density of average power absorbed in an homogeneous

medium propagating an harmonic wave

p. = ~ Re { ,jCMo~E* < E + H*PHl ).

We can calculate the average power absorbed by each

material along the unit length of the guide taken between

z = O and z = lm. We obtain in the dielectric

a

pad = ~ [1 – (?Xp ( –%) ]~o~d’ tiin &

!

I Ed(r) I’r dr
b

and in the ferrite,

b
P.~ = ~ [I – exp ( – 2a) ][e~ef’ tan ~j

J
I Ef(r) l’r clr

o

J

b b

+ Polk” ! H,j(r) 12rdr + W.L”
/

I HTf(r) 12Tdr
o 0

+ jpOK”
/

b (Hf~(r)HO~*(r) – lle~ (r)ll,~’(r) )r dr].
o

This study of the normal modes of both basic structures

has enabled us to characterize completely the propagation

of a circularly polarized wave when the magnetic field is

applied along the direction of propagation. By considering
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the characteristic equations, we can see that a reversal

of the propagation directions equivalent to a reversal of

the magnetization direction. Only the rotation sense of

the field configuration with respect to the sense of the

applied magnetic field is relevant. It follows that a

reciprocal system can be obtained by cascading-in tandem

two basic structures of the same length magnetized in

opposite directions, or else magnetized in the same direc-

tion but separated by a polarization inverter (half-wave

plate) [Fig. 2(b) ]. This is the operating principle of

a transmission type PIP [6] that we are now going to

examine in closer detail.

III. OPERATING PRINCIPLE OF A

TRANSMISSION PIP

A. Excitation of a Circularly Polarized Tllll Wave

The ferrite is partially magnetized and the bias field level

is below the knee of the magnetization curve of the

material. If P and f?– are the phase constants, respectively,

of right- and IefGhand circular polarization, we have in

this zone

fi+<b~<r

4; = pil, initial phase taken as reference

~+ = pi

@ = p-l.

Where 1 is the length of each section, the relative phase

shifts resulting from the application of the dc field are

A~s = 4+ – +; <0, phase advance

Ad– = ~– – I#Ji>0, phase delay.

Regardless of the sense of rotation of the input

undergoes a total phase shift:

A4 = A@+ + A@- = [~+ + & –2&]l

A = (a+ + a-)1.

B. Excitation by a Linearly Polarized TEII Wave

wave, it

Any linearly polarized wave can be constructed from the

counter-rotating circularly polarized waves.

After traveling through the first section (z = 1), the

complex electric field can be written

E(r,i3,1) = E+(r) exp ( –.j6) exp (– r+l)

+ E-(r) exp ( +jf?) exp (– r-l)

and, at the ouput of the second section (z = 21), it becomes

E(r,6,21) = H(r) exp ( –.jt)) exp [– (r+ + r-)1]

+ E-(r) exp (+.jO) exp [– (r+ + r-)i].

The wave transmitted by the PIP has thus undergone

the attenuation A = (m+ + a–) 1 and its phase has varied
from & = (~ + &)1. Taking as a reference the nhs,se at,

phase-shift section

~

(a)

sect. 1 sect, 2

.Hm.

(b)

Fig. 3. (a) DMP. (b) Two versions of the transmission polarization
insensitive phaser.

zero bias field, the phase shift is equal to

Ad = (~+ – @)Z+ ((3- – ~’)1 = (~++& – 2~i)1.

We thus verify that the phase and attenuation character-

istics of such a phaser do not depend upon the nature of the

input polarization. Furthermore, the electric field preserves

its initial polarization direction.

lV. OPERATING PRINCIPLE OF A DMP

The DMP [7] is particularly simple in concept. A

metallized ferrite cylinder fulfills both the polarization

and phase-shift functions by means of proper magnetiza-

tion techniques [Fig. 3(a) ]. The central part is axially

magnetized by a solenoid (phase-shift section), whereas

the input and output sections are biased by a transverse

quadruple magnetic field, each of which constitutes a

nonreciprocal circular polarizer [8].

The incidental TE1l wave with linear polarization is

transformed into a hybrid wave with circular polarization,

the sense of this polarization depending- upon the wave

propagation sense through the input polarizer. At the

output, we find a wave with the same structure as the

input wave. This system is obviously reciprocal since, in

the phase-shift section, the sense of rotation of the field

confi~ration with respect to the magnetization direction.
remains the same for both propagation directions.

V. THEORETICAL OPTIMIZATION OF THE TWO

PHASERS

A. Purposes of the Optimi~ation

The aim of this study of optimization is to define a

structure propagating only the fundamental mode, and

providing a maximal phase shift per unit length for

minimal insertion loss. So we are seeking to determine the

geometry of the structure, and the filling materials such

as the “figure of merit,” m = (AL? max)/(a max) de-
fined within a certain range of the dc field, is maximal.

The optimization of the DMP involves the choice of the

ferrite material and the guide radius. For the optimization

of the PIP we shall keep the same ferrite and the same

guide radius, and shall look for the best dielectric to use

with it, as well as the optimum filling factor b/a.

B. Characterization of the Studied Materials

The “Lignes T616graphiques et T616phoniques”

Company has given us the microwave characteristics of a
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TABLE I
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Type

—.

6101

6301

6301-1

6301-2

6307

,ompasition

NiZnCr

MgMn

MgMn

MgMn

Mgi”lnTiNl

I I
FE RR I T ES

-1---411MS AH
[G] [Oe!
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2 030
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——

10,9
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12,7

13,1

13,7

—.

I

4-
tg 6f M’i
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0,5XI0
-3

0,77

0,3 XI0-3 0,73

0,2 XI0-3 0>69

0,3XI0
-3
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I

—
,4
,!
,,
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1,
,,
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,, ‘d ,
!!

.———
,,

—~-

,,

;
,

-2 ,,
10 ,, Si02 ~ 3,8 \ 2XI0

-4

2,9x10-3~ BeO ~ 6,4 ~ 4XILI
-4

6X10-4 ;
-4

‘1203 ; “4 \
5.10

-4 :
5XI0 ,,

‘ioz - f

,,5x,o-3~ Zrlgll ; 15 i 2XI0
-4

,!
!! BaTi O ~ 35 ~ 4XI0

-4
,,
,, 9,
,,
,, TIO

-4
,, :B5;2,

4,5XI0
,(—

(Table I), together with the initial

of each ferrite.

At the present time, we do not

selection of available ferrite and dielectric materials

F

~i(db/m)
magnetization curve

know the exact de-
pendence of the permeability tensor elements of each

ferrite on the internal static field and the frequency. So, in

order to describe the different states of magnetization of

the ferrites under consideration, we have used the semi-

empirical formulas proposed by Green [9] and Rado

[10] for the real parts of p,K, and p=:

tanh[l.25(M/Ms)2]
# = pi’ + (1 – ~i’) —

tan hl.2.5

I.&’ = p,’[1 – (M/M,s)5/’]

K~=_&!!
w

By referring to the same authors, we assume the follow-

ing for the imaginary parts:

P“ = P.” = constant = I.Li”

K“ = constant = O.

Consequently, the computer results and curves which

we present here, and principally those including the

insertion loss, are not final. They are subject to correction

once the nonsaturated ferrite permeability y measurements

currently being made in our laboratory are finished.

C. Results

We have fixed the frequency band at 9.3-9.7 GHz and

the range of variation of the dc field at 0–50 Oe.

For both practical (to reduce the space required) and

theoretical (to eliminate higher order modes propagation)

reasons, we are considering guides with a radius less than

the cutoff radius of the empty TEII waveguide. Rather

than the radius “a” of the guide, we introduce the norma-

lized radius a/hO = af/c (f: frequency; c: velocity of

light). The cutoff of the TEII mode in the empty guide

occurs for a/AO E 0.293. We have varied a/X. from 0.124

to 0.28.5 which corresponds, for the central frequency of

9..5 GHz, to radii between 4 and 9 mm.

0s5

E

OJO.

0,05_

~’i

1 2 3 (X1(Y) T

Fig. 4. Insertion losses in the demagnetized state for ferrite fully
filled waveguides of different radius versus the loss tangent of
some LTT f errites.

Figs. 4–8 concern the ferrite filled guide and enable us

to select the ferrite and the guide radks best adapted to

the desired type of operation: a waveguide section excited

by positive and negative circular polarizations (the case

of the DMP) or two sections in tandem excited by a

linear or a circular polarization (the case of the PIP).

We note Ab,na when these terms refer to the PIP and

Af?+,n~+,A&,nr when they refer to the DMP. We notice

(Fig. 4) that the initial attenuation (H, = O) of a cir-

cularly polarized wave increases quasi-linearly with the

magnetic loss tangent ~,’’/M’ of the ferrites. The LTT

6301-2 ferrite is the least 10SSYand as a result of its high

saturation magnetization (411M. = 2400 G) and its weak
/&i’ (pi’ = 0.69) we can expect it to be the best choice for
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making a phase shifter. On the other hand, the LTT

6101 ferrite characterized by high magnetic loss, can be

excluded. We notice, moreover, that if the radius “a” is

increased, the attenuation decreases; nevertheless, ap-

proaching the cutoff, the propagation of a second mode

appears. We must therefore choose a normalized radius

value a/hO such that only the fundamental mode can be

propagated and we shall limit our study to this mode.

Fig. 5 shows the effect of the radius “a” and of the

frequency on the maximum relative phase shifts (phase

shifts relative to the maximum value of the bias field

Hi = 50 Oe) available with a guide filled with LTT

6301-2 ferrite for the three types of operation. The part

of the curve which is traced with a dotted line corresponds

to a maximum for A@obtained for an Hi value lower than

50 Oe. Beyond a radius of 8 mm (a/XO = 0.25) at least two

modes can be propagated. Figs. 6–8 represent variations

in the figures of merit m+,m–,m versus a/Ao when the guide

is filled successively with each of the ferrites. They con-

firm the choice of the 6301-2 ferrite.

Table II gives the optimal operating features of the

phase-shift section using the guide filled with the LTT

6301-2 ferrite.

The analysis of the behavior of a guide loaded with a

LTT 6301-2 ferrite rod surrounded by one of the proposed

*g/Cm

150–

100–

50 –

f=(9,5tQ2)GHz
HirqA)(=50ck

Oblo 015 C)20
T’ 1’

~_ L--- +55$
4 5

a(mm)I

j %..=O”’””’””’
Fig. 5. Maximum relative phas,e shtit for waveguides fuUy filled

with the LTT 6301-2 ferrite.

t

‘+ ‘deg/db) f=(9.5tQ2)GHz

010 Q15 Qzo ~o=:

o‘ --v T“ rn v

500:W
6307

1ooo-
.

r -3+

kiod, 6301.2
Fig. 6. Circularly polarized phaser using the fundamental positive

rotative mode in a ferrite fully ~led waveguide section.

;//

6301-1

4

13000
/

f=(9,5@2)GHz

1

Fig. 7. Circularly polarized phaser using the fundamental negative
rotative mode in a ferrite fully filled waveguide section.
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l-n-l /

.

f= (9,520,2)GHz

olI
lfj& 1q~o a~ i0,25

Fig. 8. Ferrite fully filled PIP element.

TABLE II

TyGe

of

Operation

Positive

mode

Negative

mode

Transmission

P. I.P.

Waveguide fully filled with L. T.T. 6301-2 ferrite - f = 9.5 GHz

optimum a[), o A6 max a max

[mm] [optimum] (deg/cm) [db/cm]

6 0,19 -49.5 0,034

8 0,25 +158>7 0>026

8 0,25 +160,7 0.065

[deg;dbl

1 440

6 100

2 473

length for

A@ me.x =36o”

[cm]

7,27

2,27

2.24x2=4.48

insertion

losses

[db)

0,247

0,059

0.146

dispersion

[deg/GHzl

2

3

13

609

dielectrics leads to the following conclusions. When the phase-shift sections using a filled composite guide (LTT

radius “a” is greater than 6 mm, sevix-al higher order

modes can be propagated even if we use the dielectric

with the lowest permittivity (Si02) ; for a radius of 6

mm, the dielectric must have a permittivk y lower than

that of the ferrite in order to propagate a single mode.

Figs. 9–1 1 allow us to determine, for a guide with a

6-mm radius the optimum filling factor when the 6301-2

ferrite is associated, respectively, with the three dielectrics

of lowest permittivities (SiO.ZIB.O ,AIZOS). It is the fused

silica with Ed = 3.8 which gives the best results for the

three types of worldng.

Table III presents the optimal operating features of the

6301-2 ferrite + Si02).

VI. CONCLUSION

This study has enabled us to improve our knowledge of

the microwave behavior of the PIP and DMP phase

shifters, and so to establish analytically an optimization

of the phase-shift section corresponding to each of these

devices.

The mathematical difficulties that we have encountered

during the numerical solving of the characteristic equa-

tions have led us to develop a computer program very

general in scope which can be adapted to the search of
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‘m+(@/db) %a & ~-

[ I I I -~-l---n

Q3 0.4 05 0,6 0,7 0.8 0.9 1

-@-
L

1-
i—

-2Ooil
a=6mm
a-af= 0,1900

I

~. c b/a
0,3 0,; O? 016 0,7 08 0,9 1

0, ,
Fig.9. Ckcularly polarized phaserusing the fundamental positive

rotative mode in a waveguide section containing an LTT 6301-2 ‘Fig. 10. Ckcularly polarized phsser using the fundamental nega-

ferrite rod surrounded by dielectric. tive rotative mode in a waveguide section containing an LTT
6301 -2 ferrite rod surrounded by dielectric.

the complex roots of any analytical function, provided Eef=#l+#,
that these roots can be localized w$thina complex plane

Hzf = T1$1+T2$2, Withrl # TZ (A-1)
closed contour, and that any possible poles on the inside

of the contour are known. In addition, we have generated $1 and +2 being two independent variables.
numerical tables of the complex Bessel functions (order O By introducing these expressions of Ezj and H,f into (2)

and 1) and their derivatives, tables which, to our know- and (3), we obtain

ledge, were hitherto incomplete.

The theoretical investigations shall be extended now to
V*~l+ (~+ grl)~l + VT2~Z+ (j’+ @2)#2 = O

the other components of the phasers, especially the non- Tlv~2@l + (e + oh)+l + T2VT2*2 + (e + cZT2)#2 = 0.

reciprocal circular polarizer of the DM P.

Furthermore, by considering these devices from a more (A-2)

practical standpoint, we intend to analyze the behavior of Suppose we can determine T1 and rz as
the PIP and DMP operated at rernanence, in order to .,
define a

devoted

banding
and

latching figure of merit. Special effort shall be .f+grl=w

to the temperature stabilization and broad- f -i- gT, = S22

techniques.

APPENDIX I e + drl = TI.S12

SOLUTION OF THE COUPLED WAVE EQUATIONS e + d7z = T2SZ2.

SYSTEM The relations (A-2) can thus be written

From (2) and (3), we can see that Ezf and H=~ satisfy
VT2@I + sl’~1 + vT2#2 + S22+2 = O

separately a wave equation of the fourth order.

To obtain a second-order equation, we put 71( vT2#l + 812V1) + 72( VT2iZ + S2242) = O.

(A-3)
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1//

Fig. 11. Transmission PIP using the fundamental rotative modes
in two waveguide sections containing an LTT 6301-2 ferrite rod
surrounded by dielectric.

TABLE III

TYPe of

Operation

POsltive

mode

Negative

mode

Transmission

P. I.P.

Waveguide containing a L. T.T. 6301.2 ferrite rod surrounded by SiO., f = 9,5 GHz I
a optimum

[mm]

6

6

6

a/b opti-

mum

0,60

0.80

0,60

I

b opti-

mutn

[mm)

4.6

4.8

3,6

-1-
A B max a max

(deg/cml (db/cml

- 54,3 0,024

+157,8 0,025

+ 96,5
I

0,038

--+----

1

deg/dbl IAf3 max =360”

(cm]

I

I

2 250 6,64

6 250 2,20

2 445 3, 73x2=7 .45

Insertion I

losses for

A13 lT,dX = 360”

[db]

0,159

0,057

0,143
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ShCf3Tl # Tz,$land$z must satisfy thewaveequhtion

v’.%#l,2+s12,2#l,2 = o (A-4)

we determine

SI,22— f e
‘rl,~ =

g ‘sl,~’–d

from (A-3) andthese relationshipss howthats l’andszzare

solutions of the quadratic equation

S4— (~+cZ)s2+fd-eg=0 (A-5)

where ( jd — eg) # O so that (A-.5) has no confused roots.

The calculation gives

fd – w = ~ P,’(k,’ – C~2K2).

The condition ( fd – eg) # Ocan thus be reduced to the

condition

i&4 – q2K2 # O

that is

rz # – BOzef(p + k).

We recognize the values of the propagation constant for

circularly polarized waves traveling in an unbounded

ferrite medium.

These values being excluded, the solutions of (A-4)

are expressed:

~, ,2. f&!?,. & ~ [(f – d)’ + 4eg_J/2.
2

(A-6)

Let us develop (A-4) in cylindrical polar coordinates:

and let us apply the separation method for variables by

stating

*l,2(~,@,~) = 4L2(7-)*1,2(0)41,2 (Z) .

This yields to

41,2 (~) = J. (s1,2T) bounded at the origin

41,2(0) = exp ( .@)

+1,2(z) = exp (– rz)

where n is an integer positive or negative and SI,2 are the

radial wavenumbers.

APPENDIX II

EXPRESSION OF THE COMPLEX FIELDS IN THE

FERRITE AND THE DIELECTRIC

The field components are assigned with the sign – or +,

according to whether they correspond to the lef~ or

right-hand rotative mode.

1) In the Dielectric:

llz~%(r,e,z,t) = + [AiJ,(kdT) + 442Y,(/’c~r) ]

.exp (*.@) exp (– ra) exp ( jd)

H..+(?”,e,z,t) = + [.4zJ,(k.r) + A’Y,(k.?”) ]

.exp ( *J3) exp ( – rz) exp (.@)

2) In the Magnetized Ferrite (H, > O):

Of the guide axis:

E.,~(r,O,z,t) = & [A,J1(w) + AJ1(w) ] exp (=@)

.exp ( – rz) exp ( jwt)

~z,+(~,6,Z,t) = & [il,ntl,(s,r) + ~w2J1(s27-) 1

“exp ( +.jd) exp ( – r.2) exp ( jd)

\
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On the quide axis:

Ez,+(o,o,z,t) = H.f+(o,o,z,t) = o

(
E.f*(o,o,z,t)=

exp ( – I’z) exp ( ,jcd)

X30[P + Cf (9 + m]

HT,T

H.,+(o,o,z,t)=

Hu,*(o,o,z,t)=

exp ( — I’z) exp (,@)

2/30[i3’ + ,f(p + K)]

“[(%= T’l)SIA’

‘(%W”2)’2A61

+ jtfz,+(o,o,z,t) .

IN THE DEMAGNETIZED FERRITE (Hi = O)

Of the guide axis:

_73.fT(T,O,Z,t) = * Mll(kf%) exp (4+0) exp ( – n=)

. exp ( &Jt)

~,f=(r,e,z,t) = * kt6;~l(kji?”) exp (4+8) exp ( – ri.)

. exp ( ~fd)

On the guide axis:

Eg,=(O,O,z,t) = H.f%(O,O,z,t) = O

[

Ex,=(o,o,z,t) = ‘. [~o#i~6 % Ti4451
mf’

A!?2’,T
“ exp ( – r%) exp ( jd)

Evf*(O,O,z,t) = + j%f+(o,o,z,t)

HT,T
[

Hzf+(O,O,z,t) = ~; – ~ As =F PA6
70 1

“ exp ( – r%) exp ( jd)

bL,T(W,4=+jHz:(O,o,z,t).
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