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required to produce an existing phase-shifter design at
high volume. These figures indicate the distribution of
cost and include attrition, burden, and profit. The attri-
tion rates assumed were 10 percent on metal parts, 30
percent on. ceramic parts, and a 4-percent rejection rate
of completed assemblies at the final inspection level. The
costs of materials are based on current prices on actual
vendor quotations. Fabrication and assembly use known
and proven techniques. Consequently, the figures of
Table I are considered to be conservative with regard to
ultimate high-volume production cost of an X-band dual-
mode phase shifter.

CONCLUSIONS

A substantial body of knowledge exists about the de-
sign and manufacturing considerations for the dual-mode
reciprocal latching ferrite phase shifter. Fundamental de-
sign techniques are well established for providing reason-
able performance over moderately wide frequency bands.
The weight-insertion loss tradeoff has been explored
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analytically and found to predict an optimum choice of
material for low RF power applications. Parameters
affecting switching and, in particular, shorted-turn damp-
ing, have been identified and expressed in normalized
form for convenience. Finally, the manufacturing problem
has been worked in far greater detail than the scope of
this paper allows, to the conclusion that lightweight
X-band phase shifters can be produced at high-volume
rates for unit cost levels on the order of $10.00.
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Computer Analysis of Microwave Propagation in a Ferrite Loaded
Gircular W aveguide—Optimization of Phase-Shifter
Longitudinal Field Sections

A. M. DUPUTZ anp A. C. PRIOU, MEMBER, TEEE

Abstract—A theoretical analysis of the microwave propagation in
a circular TE;; waveguide partiaily or completely loaded with an
axially magnetized ferrite rod is presented. This study is based upon
an exact analytical treatment of the Maxwell’s equations, together
with an original numerical method of solving transcendental equa-
tions with a complex variable. The introduction of the complex
propagation constant T' = « + jB, taking in account the losses in the
filling medium, had never been attempted because of the mathe~
matical difficulties involved making essential the use of a large
capacity computer. The developed program not only supplies all the
propagation characteristics for a given structure but also enables us
to optimize a phase-shift section in accordance with the user’s
requirements.

This study is a first step towards the theoretical optimization of
two types of reciprocal phasers: the dual mode phaser (DMP) and
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the polarization insensitive phaser (PIP), both widely used in array
antenna systems. The computed results obtained for the basic sec-
tion of such phasers operating at a central frequency of 9.5 GHz
are given,

Obviously, this work is still incomplete since it does not include
the optimization of all the components of a practical phase shifter,
for example, the polarizers. Moreover, we have assumed the ferrite
partially magnetized by a continuously variable bias field, although
the PIP and the DMP are normally operated in a latching configura-~
tion; we presently complete our study according to these practical
considerations.
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1. INTRODUCTION

HE most commonly used method of calculating the

electromagnetic wave propagation in loaded wave-
guides consists of writing out the Maxwell’s equations
in the filling media together with the boundary conditions
for the electromagnetic (EM) fields on the interface of
these media and on the guide wall. From this, we deduce
the characteristic equation which provides the mode
spectrum. Fach mode is thus defined by its propagation
constant T' = « 4 jB. It is then easy to complete the
study by determining the EM fields and the power they
carry.

Such a method is well known [1}-[3] and can be ap-
plied straightforwardly to the structure under study:
a TEy circular waveguide loaded with an axially mag-
netized ferrite rod and a dielectric tube. As the guide wall
(a perfect conductor) and the ferrite-dielectric interface
coincide with the 6 coordinate surfaces (in cylindrical
polar coordinates r,6,2), it is relatively easy to obtain an
exact analytical derivation of the characteristic equations
which is rarely the case in the study of waves guided in
anisotropic and inhomogeneous media. These equations
include Bessel functions of complex argument. In order to
solve them, we have developed a general method of
searching for the zeros of a transcendental function
F(T') by means of a computer program.
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We have thus worked out a genecral technique which,
starting from the physical and geometrical specifications
of a structure, supplies all the information desired for
each propagating mode, and particularly the precise
characterization of the fundamental mode (mode of
weakest attenuation). A program of this type may be
very useful for the engineer who wants to know rapidly
and exactly the microwave behavior of a given configur-
ation.

A TFaraday rotation phase shifter generally consists
of a phase-shift section located between two circular
polarizers. In this study we only deal with the phase-
shift seetion of two reciprocal phasers of this class: the
polarization insensitive phaser (PIP) and the dual
mode phaser (DMP). The optimization of the basic
section of these phasers involves the choice of the filling
materials and the determination of the optimum geometry.

This paper begins with a review of the mathematical
derivation of the characteristic equations for the two
basic structures: the ferrite filled guide and the guide
loaded with a ferrite rod axially located and surrounded by
dielectric. Then, we briefly review the numerical method
for solving the equations F (I') = 0, this having formed
the subject of a previous publication [47]. We also give the
analytical expressions of the field components, Poynting
vector, and absorbed power.

The second part of this work is devoted to the theoretical
optimization of DMP and PIP centered at the frequency
9.5 GHz. We analyze the results supplied by our computer
program. The use of normalized parameters versus fre-
quency makes possible a limited scaling to other frequency
regions.

II. MODAL ANALYSIS OF THE TWO BASIC
STRUCTURES EXCITED BY THE CIRCULARLY
POLARIZED TE;; MODES

A. Geometrical Definition—Physical Parameters

A circular waveguide of infinite length and radius “a”
contains on its axis a ferrite rod of radius “b” surrounded
by dielectric [Fig. 1(b)]. The DMP generally consists
of a metallized ferrite rod, i.e., b = a [Fig. 1(a)]. The
ferrite rod is axially magnetized by an uniform dc mag-
netic field. We assume that the internal field H; is equal to
the applied field H,.

The ferrite and dielectric materials are characterized
at the angular frequency « by their relative permittivity
and permeability given by

e = €' (1 — 7 tan é;) pa =1
for the dielectric and
v —JK 0
¢=¢(1—jtand) p=|jK w 0
0 0
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(a) Ferrite fully filled circular waveguide. (b) Inhomogene-
ously loaded circular waveguide.

Fig. 1.

for the ferrite, where

p=p —ju, p.=p' =g, K=K —jK".

For the demagnetized ferrite (H; = 0)

and K =0.

The elements p, K, and g, of the permeability tensor
depend upon the magnetization state of the ferrite.

B. Coupled Wave Equations—Hybrid M odes

Writing out the Maxwell’s equations in each filling
medium of the guide generates wave equations in terms
of the longitudinal components of E and H fields.

We obtain in the isotropie dieleetric a wave equation of
the classical type:

Ezd
(Ve? + kd) =0 1)
sz

and, in the ferrite, two coupled wave equations linking
E 2f and H of «

(VT2+d)Hzf+eEz/ = 0 (2)
(VT2 +f)E2f + gHzf = 0. (3)

If ¢ and ¢ are nonzero, (2) and (3) imply the existence of
hybrid modes with six field components. Now, ¢ and g can
be zero in only two cases as follows.

1) If K = 0, the ferrite is demagnetized and then
equivalent to an isotropie dielectric with scalar constants
€M1

2) If T' = 0, there is no propagation along the z direction
(e T# = 1). This can be considered as a cutoff due to the
medium. We shall exclude this case from our study.

Let us first of all examine the case of the magnetized
ferrite when the de field and the traveling wave have the
same direction (i.e., H; > 0). The coupled wave equations
can be solved by using an algebraic method close to that
of Kales [1] (see Appendix I).

The general expressions of the complex longitudinal
components are of the following form:

[vidn(sir) + 2l n(s2r) J exp( jnf) exp (—TI2),
in the ferrite
[ve'Jw(kar) + v2'Yo(kar) Jexp (jné) exp (—Tz),

in the dielectrie
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Y1,72,71 ¥ : integration constants
J,Ya: Bessel functions of first and second kind.

The incident wave being the TE;; mode of the empty
guide, we obtain n = + 1 for a left-hand (or negative)
circular polarization and n = —1 for the right-hand (or
positive) circular polarization. It should be remembered
that the polarization of a guided wave is, by definition,
that of the transverse fields on the waveguide axis.

Each of the polarizations is propagated in the circular
guide independently of one another. They are the normal
modes of the structure. They are degenerate when the
guide is filled with an isotropic medium, whether homo-
geneous or not. But the anisotropy induced by magnetiz-
ing the ferrite removes this degeneracy. The two normal
modes with positive and negative circular polarizations
travel with different propagation constants, thus with
different radial wavenumbers s. Consequently, the ex-
ponential dependence in 8 cannot be reduced to a cosine
function, thus to an amplitude factor. It oceurs as a phase
factor just like exp (—782) and exp ( juwt).

Thus the factor of the real field components should be
written: cos (wf — Bz =& ), which corresponds to a pro-
gressive wave along both the z axis and the 8 azimuth.
We call rotative modes the modes that present this
peculiarity. We shall point out that the negative rotative
mode corresponds to a left-hand circularly polarized wave,
and the positive rotative mode corresponds to a right-
hand polarized wave.

Let us now consider the case of the demagnetized ferrite
(H; = 0). As the wave equations in the ferrite are no
longer coupled, the preceding treatment is not applicable.

The wave equation in the isotropic ferrite is as follows:

(Vr? + kp?) (Eeop) = 0. 4)
(H )

However, the modes preserve in this case a hybrid
structure if the waveguide contains two media or more,
because the six field components are necessary in order to
satisly the boundary conditions on the interface of the
media.

In Appendix II, we give the expressions of the field
components in both media: ferrite and dielectric, and in
both cases: H; > 0 and H; = 0.

C. Boundary Conditions—Characteristic Equations

The simplest case is that of the ferrite filled waveguide
since there are only two boundary conditions, i.e., the
tangential components of the electrie field are zero on the
guide wall.

In the case of the guide with heterogeneous filling, the
tangential electric and magnetic fields must be continuous
on the ferrite—dielectric interface, which adds a further
four equations.

The characteristic equation of the propagation is ob-
tained by setting equal to zero the determinant of the
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system of the boundary conditions equations: we give
successively the characteristic equations of the filled guide
(5) and of the partly filled guide (6). For each of these
structures, there are two cases to consider: the first is that
of the demagnetized ferrite (H; = 0) for which the positive
and negative rotative modes correspond to the same
characteristic equation [{52) and (6a)]; and the second
is that of the magnetized ferrite (H; > 0) where each
rotative mode corresponds to a different characteristic
equation [(5b) and (6b)7]. In the latter case, we only
write one equation for the two modes and it is the value of
the azimuthal wavenumber which enables us to dis-
tinguish one from another.

Characteristic equations for the filled guide are the
following.

1) H; = 0. It is the trivial case:

F(1T% = J{(ka) = 0, for the TE modes

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, JUNE 1974

D. Numerical Analysis of the F(T') = 0 Equations

Once we have established the analytical expression of
the F(TI') functions, we can carry out the search of all the
roots in the T complex plane in order to determine the
mode spectrum. We are going to review here the principle
of the computation method developed in our laboratory
4]

First we choose a closed contour in the I plane capable
of including all the modes which can be propagated.
Excluding a priore the half-plane o« < 0 which would not
correspond to a physical solution, and the 8 < 0 zone
associated with backward modes, we define a rectangle in
the remaining quadrant (¢ > 0,8 > 0) by fixing a max-
imum value for o and B8, respectively. In our case «
maximum is equal to a few tens of decibels per centimeter,
a value above which the mode is so strongly attenuated
that it presents no practical interest; 8§ maximum is a
sufficiently high value from which F(T') becomes infinite.

F(T%) = Ji(k/a) = 0, for the TM modes. (5a) The number of modes which can be propagated (and
which satisfy the above criteria) is given by the number

2) H:>0: of zeros of F(T') contained in the rectangle thus defined.
F(T) = Wals(sia) — Wii(s:a) = O. (5b) 1) Determination of the Number of Zeros of F(T'): This

With characteristic equations for the partly filled guide,
we have found the determinantal form more convenient
for the numerical treatment.

is based on a well-known theorem: the number N of zeros
of an analytical and holomorphous function F(T) that
are cohtained within a contour C of the complex plane T
is given by:

1) H; = 0:
0 0 Jy(ka'a) Y1(ka'a) 0 0
0 0 0 0 Ji (k') Y+ (ka'a)
J (k) 0 —Jy(Fab) — Y1 (ka'b) 0 0
0 UKD 0 0 —J1(ka') — Y1 (Kka'd) =0. (6a)
nSJ 1 (ks 'b) UJy (kyib) 0 0 — Uy (ka'b)  —UaYy (ka'b)
Vil (k)  —nSTi(kyd)  —Vali (ka'd)  —Va¥y (ka'b) 0 0
2) H;> 0:
0 0 Ji(kan)  Yi(kaa) 0 0
0 0 0 0 Iy (kaa) Yy (k)
J1(s:b) J1(8:) —J1(kab)  —Y1(kab) 0 0
11 (s:b) A 0 0 —J1(kab) Y1 (kab)
= 0. (6b)
LuJy (sib) + nMyJa(sb) Ly (s:b) + nMaTy(s:b) 0 0 —NJ (kab) —NYi (kab)

Py (s1b) + n@QiJ1(sib)

Poty (8:b) + nQaJ1(s:b)

RJY (kab) RY+ (kab)

0

0
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N=i7§F'(P)dr %)

27y J o F(T)

provided that no zero belongs to €. The numerical evalu-
ation of this integral for a large number of points along C
would be rather time consuming.

The number N can, however, be evaluated much more
simply by considering the phase of the function F(T)
along the contour where each 27 jump corresponds to a
zero within the contour. In fact, in developing the pre-
ceding relation, we have

P/(T) ] .

Oy dI' = log F(T) J¢ = log F(T)Je + j arg F(T) Jo

c i
(8)
then

N = (9)

arg F(T) ]
2w C'

From the numerical point of view, the F(T') phase is
defined between —x and 4. All that is needed is to
detect the rough phase shifts from —= to 4= or from
+7 to —x by following the contour in a clockwise way,
and count -+1 at each jump from —= to 47 and —1
at each reverse jump. The sum so obtained gives the
number of zeros inside the countour, a zero being itself a
phase shift from 7 to 0, or from — (#/2) to +x/2 for
instance, as we can see on Fig. 2 where we count three
Zeros.

If the function F(T) is not holomorphous, as it occurs
in the case of the circular waveguide, the sum obtained is
equal to the difference (N — P) of the number of zeros
and of the number of poles located within C. But it is
easy to return to the preceding case, as we know the values
of T' corresponding to these poles:

TLeritic = [“602€f(ﬂ =+ K) ]1/2.

2) Localization of the Zeros of F(T'): Starting from the
positions on the contour of the phase jumps of F(T) we
can look for the exact value of the zeros by using the

(3 (rad/m)

oy, 00 T o
(MPE = e A »

1000\

500|:

(o1}
40
& (Np/m)

0 10 20 30

Fig. 2. Equiphases in the contour of the I" plane.
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method proposed by Gardiol [57]. This consists of following
the equiphases of F(T') for which we have registered a
jump of —= to += by directing towards the decreasing
amplitudes up to the close neighborhood of the desired
root. The exact position of the root is then determined
by the Newton~Raphson interpolation method.

E. Calculation of the Fields and Powers

‘We must consider the propagation of a single mode if we
wish to relate the magnitude of the fields in the structure
to the level of the incident power P;. Thus we choose the
fundamental mode and normalize the fields by putting:
P; = N2 W, where Ay is the free space wavelength ex-
pressed in meters.

The average incident power flow can be calculated in the
section z = 0 chosen arbitrarily as an input section. We
have

Pi=R: [ (EexE.zas
2/g
At every point (r,6,2) in the section, the real part of the
longitudinal component of the complex Poynting vector
represents the average power flow per unit surface around
the point under consideration. This flow only depends
upon 7 in a given section, that is

Re [_(ET XQHT*) -Z]

(2=0)

I

P(r)

3 Re [E.(r)He*(r) — Bo(r)H,*(r) .

The P(r) curves thus express the radial distribution of
the average power flow.

Starting from the general expression of the volume
density of average power absorbed in an homogeneous
medium propagating an harmonic wave

0o = 3 Re { jwe[ E* € E + H*uH}.

We can calculate the average power absorbed by each
material along the unit length of the guide taken between
z = 0 and z = 1m. We obtain in the dielectric

P = ;r_w [1 — exp (—2a) Jeoes” tan 5d/ | Ear) [*r dr
o b
and in the ferrite,

b
Py = e [1 — exp (—2a) JLewes” tan 5f/ | Ef(r) |2r dr
20 0
b b
e’ [ VHog o) Prr 4w [ | Byg(r) o dr
0 0

+ K" fo (Hoy (r) Hos* (r) — Ho(r) Hop* (r))r ).

This study of the normal modes of both basic structures
has enabled us to characterize completely the propagation
of a circularly polarized wave when the magnetic field is
applied along the direction of propagation. By considering
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the characteristic equations, we can see that a reversal
of the propagation direction is equivalent to a reversal of
the magnetization direction. Only the rotation sense of
the field configuration with respect to the sense of the
applied magnetic field is relevant. It follows that a
reciprocal system can be obtained by cascading in tandem
two basic structures of the same length magnetized in
opposite directions, or else magnetized in the same direc-
tion but separated by a polarization inverter (half-wave
plate) [Fig. 2(b)]. This is the operating principle of
a transmission type PIP [6] that we are now going to
examine in closer detail.

III. OPERATING PRINCIPLE OF A
TRANSMISSION PIP

A. Ezcitation of a Circularly Polarized TEw Wave

The ferrite is partially magnetized and the bias field level
is below the knee of the magnetization curve of the
material. If 3+ and 8~ are the phase constants, respectively,
of right- and left-hand circular polarization, we have in
this zone

gt < pi< B
¢ = B, initial phase taken as reference
¢t = g+l
¢~ = gL

Where [ is the length of each section, the relative phase
shifts resulting from the application of the de field are

Agt = ¢t — ¢? < 0, phase advance
Ag~ = ¢~ — ¢* > 0, phase delay.

Regardless of the sense of rotation of the input wave, it
undergoes a total phase shift:

C A = A¢t + A¢m = [T 4 8- —28°]1
A = (at + o)L
B. Euxcitation by a Linearly Polarized TEy Wave

Any linearly polarized wave can be constructed from the
counter-rotating circularly polarized waves.

After traveling through the first section (z = 1), the
complex electric field can be written

E(rl) = E*+(r) exp (—j8) exp (—T+)

+ E~(r) exp (+76) exp (—T0)
and, at the ouput of the second section (2 = 2[), it becomes
E(r,02l) = E*(r) exp (—78) exp [— (T* + )]

+ E=(r) exp (+0) exp [—(T+ 4 I')1].

The wave transmitted by the PIP has thus undergone
the attenuation 4 = (a* + o)l and its phase has varied
from ¢ = (B+ 4 B~)I. Taking as a reference the phase at
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phase-shift section

(a)

sect.1 sect. 2

H H
1 2
“H , tnrerter |
(b)

(a) DMP. (b) Two versions of the transmission polarization
insensitive phaser.

— -

Fig. 3.

zero bias field, the phase shift is equal to
Ap = (B — BHL+ (B~ — Bl = (BT -+ B8~ — 2891l

We thus verify that the phase and attenuation character-
istics of such a phaser do not depend upon the nature of the
input polarization. Furthermore, the electric field preserves
its initial polarization direction.

IV. OPERATING PRINCIPLE OF A DMP

The DMP [7] is particularly simple in concept. A
metallized ferrite cylinder fulfills both the polarization
and phase-shift functions by means of proper magnetiza-
tion techniques [Fig. 3(a)]. The central part is axially
magnetized by a solenoid (phase-shift section), whereas
the input and output sections are biased by a transverse
quadrupole magnetic field, each of which constitutes a
nonreciprocal circular polarizer [8].

The incidental TEy; wave with linear polarization is
transformed into a hybrid wave with circular polarization,
the sense of this polarization depending upon the wave
propagation sense through the input polarizer. At the
output, we find a wave with the same structure as the
mput wave. This system is obviously reciprocal since, in
the phase-shift section, the sense of rotation of the field
configuration with respect to the magnetization direction
remains the same for both propagation directions.

V. THEORETICAL OPTIMIZATION OF THE TWO
PHASERS

A. Purposes of the Optimization

The aim of this study of optimization is to define a
structure propagating only the fundamental mode, and
providing a maximal phase shift per unit length for
minimal insertion loss. So we are seeking to determine the
geometry of the structure, and the filling materials such
ag the ‘“figure of merit,” m = (A8 max)/(« max) de-
fined within a certain range of the de¢ field, is maximal.

The optimization of the DMP involves the choice of the
ferrite material and the guide radius. For the optimization
of the PIP we shall keep the same ferrite¢ and the same
guide radius, and shall look for the best dielectric to use
with it, as well as the optimum filling factor b/a.

B. Characterization of the Studied Materials

The “Lignes Télégraphiques et Téléphoniques”
Company has given us the microwave characteristics of a
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TABLE 1
| n ; :
FERRITES H DI-ELECTRICS
n il 1
n 1 1}
Type Composition 41 Ms A H§ €p tg 6_F u'i u"i :E Composition) €y | otg (Sd
(6) (Ce i i |
= } 0
- o : ; =
6101 NiZnCr 2 420 23 10,9 0,5x10 0,78 10 H sSipz2 , 3.8 H 2x10
n T 1
§301 Mghn 2 030 3 12,6 [ 0,5x107° 0,77 2,9x10 "2} BeO 5 5,4 1 axt0”?
§301-1 | Mghn 2 230 3,6 12,7 | 0,3x107% |o,73 axio™d AL, ¢ s,a | oave™
- - u t
8301-2 | Mghn 2 400 3,3 13,1 | 0,2x107° 0,59 sxip™ 4 Tio, ;
[ 1 1
5307 MgMnTiNa 1790 7 13,7 | o,ax107° |o,82 1531078 g0 fos T
y BaTily | 35 Uoaxin?
n ] 1
! : . 4
¢ T, P85 1 4,5¢10
L + 1
selection of avallable ferrite and dielectric materials — k! (db /
(Table I), together with the initial magnetization curve - cm)
of each ferrite. -
At the present time, we do not know the exact de- R a-af_o167
pendence of the permeability tensor elements of each 015 do €%

ferrite on the internal static field and the frequency. So, in
order to describe the different states of magnetization of
the ferrites under consideration, we have used the semi-
empirical formulas proposed by Green [9] and Rado
[10] for the real parts of u,K, and pu,:

tan h{1.25(M/Ms)?]
tan hl1.25

w1 — (M/Ms)*"]
M

(5]

po=pd + (1 —p)

I4

R =

K =

By referring to the same authors, we assume the follow-
ing for the imaginary parts:

14

[
K//

g’ = constant = u;"”’

constant = 0.

Consequently, the computer results and curves which
we present here, and principally those including the
insertion loss, are not final. They are subject to correction
once the nonsaturated ferrite permeability measurements
currently being made in our laboratory are finished.

C. Results

We have fixed the frequency band at 9.3-9.7 GHz and
the range of variation of the de field at 0-50 Oe.

For both practical (to reduce the space required) and
theoretical (to eliminate higher order modes propagation)
reasons, we are considering guides with a radius less than
the cutoff radius of the empty TE; waveguide. Rather
than the radius “a” of the guide, we introduce the norma-
lized radius a/N = af/c (f: frequency; c: velocity of
light). The cutoff of the TEy; mode in the empty guide
oceurs for a/A =~ 0.293. We have varied a/)\, from 0.124
to 0.285 which corresponds, for the central frequency of
9.5 GHz, to radii between 4 and 9 mm.

005
— Wi
- 2 3(x10%)H!

G W B R N

63552 63011 6307 6301

Fig. 4. Insertion losses in the demagnetized state for ferrite fully
filled waveguides of different radius versus the loss tangent of
some LTT ferrites.

Figs. 4-8 concern the ferrite filled guide and enable us
to select the ferrite and the guide radius best adapted to
the desired type of operation: a waveguide section excited
by positive and negative circular polarizations (the case
of the DMP) or two sections in tandem excited by a
linear or a circular polarization (the case of the PIP).
We note AB,m when these terms refer to the PIP and
Agtmt, A~ ,m~ when they refer to the DMP. We notice
(Fig. 4) that the initial attenuation (H, = 0) of a cir-
cularly polarized wave increases quasi-linearly with the
magnetic loss tangent p,”’/p of the ferrites. The LTT
6301-2 ferrite is the least lossy and as a result of its high
saturation magnetization (4IIM, = 2400 G) and its weak
w (u’ = 0.69) we can expect it to be the best choice for
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making a phase shifter. On the other hand, the LTT
6101 ferrite characterized by high magnetic loss, can be
- excluded. We notice, moreover, that if the radius “a” is
increased, the attenuation decreases; nevertheless, ap-
proaching the cutoff, the propagation of a second mode
appears. We must therefore choose a normalized radius
value a/)\, such that only the fundamental mode can be
propagated and we shall limit our study to this mode.

Fig. 5 shows the effect of the radius ‘‘@” and of the
frequency on the maximum relative phase shifts (phase
shifts relative to the maximum value of the bias field
H; = 50 Qe¢) available with a guide filled with LTT
6301-2 ferrite for the three types of operation. The part
of the curve which is traced with a dotted line corresponds
to a maximum for AB obtained for an H; value lower than
50 Oe. Beyond a radius of 8 mm (a/N\ = 0.25) at least two
modes can be propagated. Figs. 6-8 represent variations
in the figures of merit m*,m~,m versus ¢/ when the guide
is filled successively with each of the ferrites. They con-
firm the choice of the 6301-2 ferrite.

Table II gives the optimal operating features of the
phase-shift section using the guide filled with the LTT
6301-2 ferrite.

The analysis of the behavior of a guide loaded with a
LTT 6301-2 ferrite rod surrounded by one of the proposed

g/ m
150} AP
: ABHAX::(AB-*AB*)HAX
100
}_
50+
B f=(95£02) GHz
N Himax =500e
o1 015 020 aj, 0%
o050 e, O
— 4 5 6 7 8
| a(mm)
— . */
’_ AB+MA)‘ . ’*/ -
-50-- -
Fig. 5. Maximum relative phase shift for waveguides fully filled

with the LTT 6301-2 ferrite.
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Fig. 6. Circularly polarized phaser using the fundamental positive
rotative mode in a ferrite fully filled waveguide section.
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Fig. 7. Circularly polarized phaser using the fundamental negative
rotative mode In a ferrite fully filled waveguide section.
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Fig. 8. Ferrite fully filled PIP element.

TABLE 11
T waveguide fully filled with L.T.T. 6301-2 ferrite - f = 9,5 GHz
ype
of @ optimum a’Xg AR max a max m length for |insertion dispersion
Operation (rm) (optimum) (deg/cm) (db/cm) (deg/db) AB max =360° losses (deg/GHz)
fem) (db)

Positive
mode 5] 0,19 -49,5 0,034 1 440 7,27 0,247 2
Negative
mode 8 0,25 +158,7 0,026 § 100 2,27 0,059 3
Transmission
P.I.P. 8 0,25 +160,7 0,085 2 473 2,24x2=4,48 0,146 13

dielectrics leads to the following conclusions. When the
radius “a’” is greater than 6 mm, several higher order
modes can be propagated even if we use the dielectric
with the lowest permittivity (8;0,); for a radius of 6
mm, the dielectric must have a permittivity lower than
that of the ferrite in order to propagate a single mode.

Figs. 9-11 allow us to determine, for a guide with a
6-mm radius the optimum filling factor when the 6301-2
ferrite is associated, respectively, with the three dielectrics
of lowest permittivities (8:0:,B.0,A10;). It is the fused
silica with ¢ = 3.8 which gives the best results for the
three types of working.

Table 11T presents the optimal operating features of the

phase-shift sections using a filled composite guide (LTT
6301-2 ferrite + S5;0,).

VI. CONCLUSION

This study has enabled us to improve our knowledge of
the microwave behavior of the PIP and DMP phase
shifters, and so to establish analytically an optimization
of the phase-shift section corresponding to each of these
devices.

The mathematical difficulties that we have encountered
during the numerical solving of the characteristic equa-
tions have led us to develop a computer program very
general in scope which can be adapted to the search of
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Fig. 9. Circularly polarized phaser using the fu_ﬂda.mental positive
rotative mode in a wavegulde section containing an LTT 6301-2
ferrite rod surrounded by dielectric.

the complex roots of any analytical function, provided
that these roots can be localized within a complex plane
closed contour, and that any possible poles on the inside
of the contour are known. In addition, we have generated
numerical tables of the complex Bessel functions (order 0
and 1) and their derivatives, tables which, to our know-
ledge, were hitheito incomplete.

The theoretical investigations shall be extended now to
the other components of the phasers, especially the non-
reciprocal circular polarizer of the DMP.

Furthermore, by considering these devices from a more
practical standpoint, we intend to analyze the behavior of
the PIP and DMP operated at remanence, in order to
define a latching figure of merit. Special effort shall be
devoted to the temperature stabilization and broad-
banding techniques.

APPENDIX 1

SOLUTION OF THE COUPLED WAVE EQUATIONS
SYSTEM

From (2) and (3), we can see that E.; and H.; satisfy
separately a wave equation of the fourth order.
To obtain a second-order equation, we put

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, JUNE 1947

a
03 '0,14 015 O,‘G 07 08 09 1

0

1

" Fig. 10. Circularly polarized phaser using the fundamental nega-

tive rotative mode in a waveguide section containing an LTT
6301-2 ferrite rod surrounded by dielectric.

Er=9+¢:

Hzf = 71 + Ty,

¥1 and y» being two independent variables.
By introducing these expressions of K.y and H,s into (2)
and (3), we cbtain

Vi + (f+ g’fl)llll + Vs - (f+ .(sz)‘llz =0
Vet + (e + dri)dr + rVelle + (e + dra)e = 0.

with TL 7 79 (A—l)

(A-2)
Suppose we can determine ; and » as
J 4 gm= st
f+gr = s?
and
e+ dry = 1182
e+ dry = 7o8e% (A-3)

The relations (A-2) can thus be written
Ve + s + Vi'de + %, = 0
11 (Ve + sP) + (Ve + ss) = 0.
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f= 9,5 GHZ .

a=6mm.
QX=Q1900.

Y
0 04
0{02 ! i L 01'6 1 018 | 1

Fig. 11. Transmission PIP using the fundamental rotative modes
in two waveguide sections containing an LTT 6301-2 ferrite rod
surrounded by dielectric.

TABLE III
Waveguide containing a L.T.7. 6301.2 ferrite rod surrounded by 5i0 f = 8,5 GHz
Type of 2
Operation a optimum a/b opti- b opti- A B max jo max m length for insertion
1
(mm) mum mum (deg/cm) | {db/cm) ( deg/db) AB max =360° tosses for
(cm) AB max = 360°
m
(mm) (db)
Positive
mode 6 0,80 4,8 - 54,3 0.024 2 250 6,64 0,159
Negative
mode B 0.80 4,8 +157,8 0,025 B 250 2,28 0,057
Transmission
P.I.P. 6 0,80 3,8 + 96,5 0,038 2 445 3,73x2=7,46 0,143

611



612 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, JUNE 1974

Since 71 5 79,41 and ¥» must satisfy the wave equation 1) In the Dielectric:
Veie + st = 0 (A-4) BT (r02t) = £ [Ad1(kar) + A2Y1(kar)]
we determine -exp (70) exp (—T2) exp ( jowt)
31’22 — f e sz:F('rﬁ,z,t) = 4 [Ang(kdr) + A4Y1(kd7')]
T ,2 == = . .
' g s12? — d cexp (F70) exp (—T'z) exp ( jwt)
from. (A-3) and these rel.ationships show that &% and s,® are !f n o Bo [ 3B _mo g
solutions of the quadratic equation T T e “or za
= (f+d)s+fd—eg=0 (A-5) E:nT ol o .
. MO zd
where ( fd — eg) #= 0 so that (A-5) has no confused roots. By =] ko [770 or - Eza:F]
The caleulation gives
. - ( _OH T
fd —eq = "“304(]{5]'4 — ¢2K?). l Hfd:F = — E(’)‘ [F e + E‘Ezd$]
1 ks or T

The condition ( fd — eg) # 0 can thus be reduced to the OE.F T
condition He =3 ﬁo [ed = r~ H zf] .

- kd No 67'
kst — K2 5# 0
2) In the Magnetized Ferrite (H; > 0):

Off the guide axs:

: : EZ + bAS] :t 4 ]
We recognize the values of the propagation constant for 7 (r0,20) * [As/i(s1r) + AoJu(sr) J exp (&76)
circularly polarized waves traveling in an unbounded rexp (—T2) exp (jot)

ferrite medium, £ _
These values being excluded, the solutions of (A-4) Hey (r028) = & [AsriJu(swr) + AorsJa(sr) ]

are expressed: cexp(470) exp (—T2) exp (jwt)

that is
12 # — ﬁozéf(}l. =+ IG)

]

f+d 1 1 [ ( 0BT _ &K
810 = + = d)? + deg 2. A-6 ) o — ket x4 g ¥
= TS S~ D e (A6) P = e | T,
Let us develop (A-4) in cylindrical polar coordinates: OH,F T
19 1 9 - m,KI‘2 b= 170(6sz - p,kfz) ]
(; +-= + '_25;2 + )\l’l,z + 81,212 =0
Er) pow_ J K‘?E’fj;
and let us apply the separation method for variables by T By(e2K? — IZ;“) R Ty
stating
Kz - 8H,T
Y12(r,0,2) = Y12(r)¥1,2(0)¥.2(2). + —TLE’,,i> + no(e K2 — k) —=
This yields to
T2
Y12(r) = Jn(s1,97) bounded at the origin F oK " H z,:F]
¥1,2(0) = exp (gnf)
Y12(2) = exp (—TI'2) ( 1 - 8H.T &K
L . . Hy™ = BolePK? — Ty | ety T H
where 7 is an integer positive or negative and s;» are the 4 4
radial wavenumbers. F
1A ks?
- E (efK 9 ! -+ LEzfi)]
APPENDIX II s o or
s ) .
EXPRESSION OF THE COMPLEX FIELDS IN THE H,F = I [ r (—e,K OH.,
FERRITE AND THE DIELECTRIC T Bo(eK — k) ar
The field components are assigned with the sign — or -, P2 e /- OB.F oK
according to whether they correspond to the left- or +-LH z,i) +Z (k 2 20 I E’z,i)]
right-hand rotative mode. ’ o ar
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On the guide axis:

E"-f:F(O;O;zyt) = HZJ:F(O;();z;t) =0

exp (—Tz) exp ( jwi)
260[T2 + ¢ (n £ K) ]
‘[Cro(e £ K)m F Ts1ds
+ [no(e &= K)re F Tlsede]
E,F(00,20) = -+ jE.F(0,0,21)

Ezfﬂ: (0,0,Z,t) =

ET:Ff<

exp (—T2) exp ( jwt)
260[ T + ¢ (p = K) ]

.[<_:51 + T‘Tl) 81A5

1o

+ (——ef =+ f"m) 82A6]
M0

Hy,®(0,0,28) = &= jH.7(0,02,1).

fo:F(():O;Z;t) =

Hyp <

APPENDIX III

IN THE DEMAGNETIZED FERRITE (H;
Off the guide axis:
E.T(r0,20) = & AsiJi(kfr) exp (£36) exp (—T41,)

= 0)

-exp ( jot)
H. (rpzt) = &= AeJ1(ksr) exp (=£76) exp (—T%,)
-exp ( jwt)
( Bo [ .0, T B ]
= — i —LFqg—H,TF
I, Ic,"z[ ar o7, M
ET, + i
F o .760 aHz/ E F
{Eaf = Lo [7101'«1 or ’ EZf
! = - [ T oo Ezf]
kepi2 ar nor
IIT‘(:F H . E(l I:ef aEz! f‘—lH :F]
o I kfﬂ Mo ar r #
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On the guide axis:
Ez,:F(O,O,Z,t) = HZI:F(O)O:zyt) = O

B (0020 = 2% s F 4]
2kr
Ep,F . .
cexp (—T'%2) exp ( juwt)
E,,,:F(O,O,z,t) = :EjE,l,:F(O,O,z,t)
F Bo €f =
HI[ (O;O;Z;t) =771 _A5 + P”As
X 2ks? 7o
HyF . .
cexp (—1'2) exp ( jwl)
H,7(0,0,20) = + jH.,7(0,0,2,).
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